Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 598(7879): 49-52, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34616055

RESUMO

Spacecraft missions have observed regolith blankets of unconsolidated subcentimetre particles on stony asteroids1-3. Telescopic data have suggested the presence of regolith blankets also on carbonaceous asteroids, including (101955) Bennu4 and (162173) Ryugu5. However, despite observations of processes that are capable of comminuting boulders into unconsolidated materials, such as meteoroid bombardment6,7 and thermal cracking8, Bennu and Ryugu lack extensive areas covered in subcentimetre particles7,9. Here we report an inverse correlation between the local abundance of subcentimetre particles and the porosity of rocks on Bennu. We interpret this finding to mean that accumulation of unconsolidated subcentimetre particles is frustrated where the rocks are highly porous, which appears to be most of the surface10. The highly porous rocks are compressed rather than fragmented by meteoroid impacts, consistent with laboratory experiments11,12, and thermal cracking proceeds more slowly than in denser rocks. We infer that regolith blankets are uncommon on carbonaceous asteroids, which are the most numerous type of asteroid13. By contrast, these terrains should be common on stony asteroids, which have less porous rocks and are the second-most populous group by composition13. The higher porosity of carbonaceous asteroid materials may have aided in their compaction and cementation to form breccias, which dominate the carbonaceous chondrite meteorites14.

2.
Nature ; 587(7833): 205-209, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33106686

RESUMO

An asteroid's history is determined in large part by its strength against collisions with other objects1,2 (impact strength). Laboratory experiments on centimetre-scale meteorites3 have been extrapolated and buttressed with numerical simulations to derive the impact strength at the asteroid scale4,5. In situ evidence of impacts on boulders on airless planetary bodies has come from Apollo lunar samples6 and images of the asteroid (25143) Itokawa7. It has not yet been possible, however, to assess directly the impact strength, and thus the absolute surface age, of the boulders that constitute the building blocks of a rubble-pile asteroid. Here we report an analysis of the size and depth of craters observed on boulders on the asteroid (101955) Bennu. We show that the impact strength of metre-sized boulders is 0.44 to 1.7 megapascals, which is low compared to that of solid terrestrial materials. We infer that Bennu's metre-sized boulders record its history of impact by millimetre- to centimetre-scale objects in near-Earth space. We conclude that this population of near-Earth impactors has a size frequency distribution similar to that of metre-scale bolides and originates from the asteroidal population. Our results indicate that Bennu has been dynamically decoupled from the main asteroid belt for 1.75 ± 0.75 million years.

3.
J Geophys Res Planets ; 125(3): e2019JE006296, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32714727

RESUMO

Some years ago, the consensus was that asteroid (16) Psyche was almost entirely metal. New data on density, radar properties, and spectral signatures indicate that the asteroid is something perhaps even more enigmatic: a mixed metal and silicate world. Here we combine observations of Psyche with data from meteorites and models for planetesimal formation to produce the best current hypotheses for Psyche's properties and provenance. Psyche's bulk density appears to be between 3,400 and 4,100 kg m-3. Psyche is thus predicted to have between ~30 and ~60 vol% metal, with the remainder likely low-iron silicate rock and not more than ~20% porosity. Though their density is similar, mesosiderites are an unlikely analog to bulk Psyche because mesosiderites have far more iron-rich silicates than Psyche appears to have. CB chondrites match both Psyche's density and spectral properties, as can some pallasites, although typical pallasitic olivine contains too much iron to be consistent with the reflectance spectra. Final answers, as well as resolution of contradictions in the data set of Psyche physical properties, for example, the thermal inertia measurements, may not be resolved until the NASA Psyche mission arrives in orbit at the asteroid. Despite the range of compositions and formation processes for Psyche allowed by the current data, the science payload of the Psyche mission (magnetometers, multispectral imagers, neutron spectrometer, and a gamma-ray spectrometer) will produce data sets that distinguish among the models.

4.
Nat Commun ; 7: 12591, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27575002

RESUMO

The Martian satellite Phobos is criss-crossed by linear grooves and crater chains whose origin is unexplained. Anomalous grooves are relatively young, and crosscut tidally predicted stress fields as Phobos spirals towards Mars. Here we report strong correspondence between these anomalous features and reaccretion patterns of sesquinary ejecta from impacts on Phobos. Escaping ejecta persistently imprint Phobos with linear, low-velocity crater chains (catenae) that match the geometry and morphology of prominent features that do not fit the tidal model. We prove that these cannot be older than Phobos' current orbit inside Mars' Roche limit. Distinctive reimpact patterns allow sesquinary craters to be traced back to their source, for the first time across any planetary body, creating a novel way to probe planetary surface characteristics. For example, we show that catena-producing craters likely formed in the gravity regime, providing constraints on the ejecta velocity field and knowledge of source crater material properties.

5.
Science ; 348(6241): 1355-8, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-26022415

RESUMO

Cometary nuclei imaged from flyby and rendezvous spacecraft show common evidence of layered structures and bilobed shapes. But how and when these features formed is much debated, with distinct implications for solar system formation, dynamics, and geology. We show that these features could be a direct result of accretionary collisions, based on three-dimensional impact simulations using realistic constitutive properties. We identify two regimes of interest: layer-forming splats and mergers resulting in bilobed shapes. For bodies with low tensile strength, our results can explain key morphologies of cometary nuclei, as well as their low bulk densities. This advances the hypothesis that nuclei formed by collisional coagulation-either out of cometesimals accreting in the early solar system or, alternatively, out of comparable-sized debris clumps paired in the aftermath of major collisions.

6.
Nature ; 494(7436): 207-10, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-23407535

RESUMO

Asteroid 4 Vesta seems to be a major intact protoplanet, with a surface composition similar to that of the HED (howardite-eucrite-diogenite) meteorites. The southern hemisphere is dominated by a giant impact scar, but previous impact models have failed to reproduce the observed topography. The recent discovery that Vesta's southern hemisphere is dominated by two overlapping basins provides an opportunity to model Vesta's topography more accurately. Here we report three-dimensional simulations of Vesta's global evolution under two overlapping planet-scale collisions. We closely reproduce its observed shape, and provide maps of impact excavation and ejecta deposition. Spiral patterns observed in the younger basin Rheasilvia, about one billion years old, are attributed to Coriolis forces during crater collapse. Surface materials exposed in the north come from a depth of about 20 kilometres, according to our models, whereas materials exposed inside the southern double-excavation come from depths of about 60-100 kilometres. If Vesta began as a layered, completely differentiated protoplanet, then our model predicts large areas of pure diogenites and olivine-rich rocks. These are not seen, possibly implying that the outer 100 kilometres or so of Vesta is composed mainly of a basaltic crust (eucrites) with ultramafic intrusions (diogenites).

7.
Nature ; 476(7358): 69-72, 2011 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-21814278

RESUMO

The most striking geological feature of the Moon is the terrain and elevation dichotomy between the hemispheres: the nearside is low and flat, dominated by volcanic maria, whereas the farside is mountainous and deeply cratered. Associated with this geological dichotomy is a compositional and thermal variation, with the nearside Procellarum KREEP (potassium/rare-earth element/phosphorus) Terrane and environs interpreted as having thin, compositionally evolved crust in comparison with the massive feldspathic highlands. The lunar dichotomy may have been caused by internal effects (for example spatial variations in tidal heating, asymmetric convective processes or asymmetric crystallization of the magma ocean) or external effects (such as the event that formed the South Pole/Aitken basin or asymmetric cratering). Here we consider its origin as a late carapace added by the accretion of a companion moon. Companion moons are a common outcome of simulations of Moon formation from a protolunar disk resulting from a giant impact, and although most coplanar configurations are unstable, a ∼1,200-km-diameter moon located at one of the Trojan points could be dynamically stable for tens of millions of years after the giant impact. Most of the Moon's magma ocean would solidify on this timescale, whereas the companion moon would evolve more quickly into a crust and a solid mantle derived from similar disk material, and would presumably have little or no core. Its likely fate would be to collide with the Moon at ∼2-3 km s(-1), well below the speed of sound in silicates. According to our simulations, a large moon/Moon size ratio (∼0.3) and a subsonic impact velocity lead to an accretionary pile rather than a crater, contributing a hemispheric layer of extent and thickness consistent with the dimensions of the farside highlands and in agreement with the degree-two crustal thickness profile. The collision furthermore displaces the KREEP-rich layer to the opposite hemisphere, explaining the observed concentration.

8.
Nature ; 413(6854): 369-70, 2001 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-11574866
9.
Nature ; 412(6848): 708-12, 2001 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-11507633

RESUMO

The Moon is generally believed to have formed from debris ejected by a large off-centre collision with the early Earth. The impact orientation and size are constrained by the angular momentum contained in both the Earth's spin and the Moon's orbit, a quantity that has been nearly conserved over the past 4.5 billion years. Simulations of potential moon-forming impacts now achieve resolutions sufficient to study the production of bound debris. However, identifying impacts capable of yielding the Earth-Moon system has proved difficult. Previous works found that forming the Moon with an appropriate impact angular momentum required the impact to occur when the Earth was only about half formed, a more restrictive and problematic model than that originally envisaged. Here we report a class of impacts that yield an iron-poor Moon, as well as the current masses and angular momentum of the Earth-Moon system. This class of impacts involves a smaller-and thus more likely-object than previously considered viable, and suggests that the Moon formed near the very end of Earth's accumulation.

10.
Sci Am ; 282(5): 46-55, 2000 May.
Artigo em Inglês | MEDLINE | ID: mdl-11056989
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA